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Abstract
Quasiperiodic patterns described by polyhedral ‘atomic surfaces’ are
considered. It is shown that under certain rationality conditions (which
coincide with the necessary conditions for the existence of matching rules),
the cohomology ring of the continuous hull of such patterns is isomorphic
to that of the complement of a torus T N to an arrangement A of thickened
affine tori of codimension 2. Explicit computation of Betti numbers for
several two-dimensional tilings and for the icosahedral Ammann–Kramer tiling
confirms in most cases the results obtained previously by different methods.
The cohomology groups of T N\A have a natural structure of a right module
over the group ring of the space symmetry group of the pattern and can be
decomposed in a direct sum of its irreducible representations. An example of
such decomposition is shown for the Ammann–Kramer tiling.

PACS numbers: 02.40.Re, 61.44.Br
Mathematics Subject Classification: 37Bxx, 52C23, 55N15

1. Introduction

One of the distinct features of crystalline structures is that they are characterized by discrete
parameters, in addition to continuous ones. Examples of such discrete parameters are lattice
symmetry classes, numbers of atoms in the unit cell, occupancies of Wyckoff positions, etc.
Taking into account the role of discrete parameters in our understanding of the structure, it
is appealing to find similar parameters for quasicrystals. Certain of them could be obtained
as a generalization of the discrete parameters specific for crystals in the framework of the
‘cut-and-project’ model. This is the case, e.g., for the symmetry class of the underlying high-
dimensional lattice [1] or for the number of atoms in the unit cell (which is replaced by the
homology class of the atomic surface [2]). The efforts to develop a more systematic approach
to the problem have lead to a promising concept of mutual local derivability (MLD) [3, 4].

An alternative approach to classification of quasicrystals is based on the notion of the hull
of a quasiperiodic structure. The concept of hull originated from the works by Bellissard [5]
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on C∗-algebras of observables in solid-state physics. Bellissard conjectured that this algebra
includes a crossed product of the algebra of functions on a topological space (called ‘the
hull’) with the group of translations acting on it. In many cases, including the one-particle
Schrödinger equation in a quasiperiodic potential, the hull can be described explicitly. The
quasiperiodic patterns of the same MLD class have homeomorphic hulls, which allows one to
characterize quasicrystals by algebraic topological invariants of their hulls. In this paper, we
show that some of these invariants, namely the cohomology ring of the hull may also occur in
the study of the matching rules of quasicrystals.

Before proceeding any further, let us describe briefly the geometric constructions used
in the paper. Following the so-called ‘cut-and-project’ method, a quasiperiodic point set
is obtained as an intersection of d-dimensional affine subspace E‖ ⊂ R

N with a periodic
arrangement of (N − d)-dimensional manifolds (with boundary) in R

N . The space E‖ is
usually referred to as a ‘physical space’, or ‘cut’, and the (N − d)-dimensional manifolds
are called ‘atomic surfaces’. One can define affine coordinates on R

N in such a way that
the periodic translations of the arrangement of atomic surfaces correspond to the vectors
with integer coefficients. The space R

N can be factored by integer translations, yielding the
N -dimensional torus T N . We also assume that E‖ is not contained in any proper rational
subspace of R

N , hence its image under the natural projection π : R
N → T N fills densely the

torus T N .
In this paper, we consider polyhedral atomic surfaces only. In order to simplify the

proofs we also make several other non-essential assumptions. In particular, we require that
all connected parts of the atomic surface be flat and parallel to an (N − d)-dimensional affine
subspace E⊥ ⊂ R

N . The R
N is furnished with a Euclidean metric, such that E‖ and E⊥

are perpendicular. When this does not lead to confusion, we will implicitly switch between
R

N and T N . In particular, we will use symbols E‖ and E⊥ to designate subspaces in the
local coordinate system on T N . The term ‘atomic surface’ will also signify the submanifold
S ⊂ T N obtained by the natural projection of atomic surfaces from R

N . Likewise, we will
speak about translations and convolutions in T N implying the operations in the universal cover
of T N . The same applies to the definition of ‘piecewise-linear’ (PL) subspaces of T N .

2. Matching rules, obstacles and the rationality condition

In this section, we describe the construction of the arrangement of thickened affine tori. This
arrangement arises the most naturally in the study of the matching rules of quasiperiodic
patterns. As we shall see, this construction is only possible if the boundary of the atomic
surface satisfies certain rationality condition, which is also a prerequisite to the existence of
the strong matching rules.

The term ‘matching rules’ is usually taken to mean the set of local constraints on a
pattern (a tiling or a discrete set of points) guaranteeing its global quasiperiodicity. One can
distinguish two approaches to the construction of matching rules. One approach, which was
historically the first, is based on the scaling symmetry of the quasiperiodic pattern [6, 7]. The
other one is built upon a more physical idea of propagation of the quasiperiodic order and
leads to the topological formulation of the matching rules [8, 9, 11]. Let us briefly recall the
derivation of the latter approach.

From the very beginning of the study of quasicrystals it has become obvious that their
stability is closely related with the possibility of propagation of information about the local
phason coordinate. In particular, the stability requires that the places at which the structure
undergoes reconstruction under a uniform phason shift be arranged in a special way. Namely,
when the magnitude of the phason shift tends to zero, the minimal distance between the
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Figure 1. The globally connected net formed by R-discs centred at the points where a singular cut
crosses the boundary of the atomic surface of an undecorated Ammann octagonal tiling. This cut
passes through the vertices of the atomic surface.

places where the structure is rearranged should not grow indefinitely, because otherwise no
physical mechanism could guarantee the simultaneousness of the rearrangements [12]. More
precisely, there should exist such positive number R, that the union of discs of radius R,
centred at the places where the rearrangements occur, form a globally connected net for any
finite uniform phason shift (see figure 1). In the general case, the geometry of this net could
be quite complicated. However, we shall restrict our consideration to an important special
class of structures described by flat atomic surfaces with polygonal boundary. This class
includes in particular the so-called model sets [13]. in this case, the rearrangements of atoms
under a uniform phason shift occur only when the cut crosses the boundary ∂S of the atomic
surface; this boundary thus plays a crucial role in the propagation of the quasiperiodic order. In
particular, it can be shown that the matching rules impose certain constraints on the orientation
of the faces Fi of the boundary [9, 12]. Namely, the orientation of each face Fi is such that a
singular cut, crossing it at one point, will cross it at an infinite set of points, which is dense
in Fi . When considered in the space of the cut, these points form an R-dense set [10] in a
hyperplane in E‖, as can be seen in figure 1. It is convenient to associate with each face Fi

of the atomic surface a pair of unit vectors ki ∈ E⊥ and ni ∈ E‖, which are respectively
normal to Fi and to the hyperplane in E‖ containing the points of intersection of the singular
cut with Fi . As Fi is crossed by the singular cut at a dense set of points, this is also true for the
extension of Fi (i.e., the intersection of all affine subspaces of RN containing Fi). The closure
of this extension in the topology of T N is clearly an affine torus, which is orthogonal to both
ki ∈ E⊥ and ni ∈ E‖ and intersects E‖ and E⊥ at subspaces of codimension 1. We are now
at the point to formulate the rationality condition on the boundary of the atomic surface:

Rationality condition. The atomic surface is called to satisfy the rationality condition if for
any of its faces Fi there exist two vectors ni ∈ E‖ and ki ∈ E⊥ such that the closure of the
extension of the face Fi in topology of T N is an affine torus of dimension N −2, perpendicular
to ni and ki .

Hereinafter, we assume that the atomic surface satisfies this condition. It is worth
mentioning here that this condition is only necessary for the existence of strong matching
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Figure 2. Thickened hyperplane.

rules. In fact, there are quasiperiodic patterns which do not admit strong matching rules (e.g.,
the non-decorated octagonal and dodecagonal tilings), but for which the rationality condition
is satisfied and hence the cohomology of the continuous hull still can be computed by the
method described in this paper.

It is important to note that the rearrangements of the quasiperiodic pattern under the action
of the uniform phason shift occur simultaneously on the entire net of the figure 1. Since such
rearrangements do not break the perfect quasiperiodic order, the matching faults may occur
only at the places where the synchronization of rearrangements is broken at distances smaller
than some finite R. The idea of the topological description of the matching rules stems from
an observation that such defects can be produced if one allows the cut to undulate. in this
case, the matching faults would correspond to intersections of the undulating cut with the set
YR = ∂S + B

‖
R , where B

‖
R stands for an R-ball in the parallel direction. The set YR is naturally

referred to as ‘obstacles’ of ‘forbidden set’ [8, 9]. The obstacles YR are said to define strong
matching rules if any map of the physical space into T N\YR , satisfying some mild ‘sanity
conditions’ (e.g., to be everywhere transversal to the direction of E⊥), is homotopy equivalent
to a perfect cut.

Let us take a closer look at the obstacles YR in the case when the atomic surface satisfies
the rationality condition. The set YR can be represented as

YR =
⋃
i∈I

tR,i , (1)

where the set I enumerates the faces of the atomic surface and TR,i is defined as

tR,i = Fi + B
‖
R. (2)

From this point on, it is convenient to replace the Euclidean norm used to define the R-balls in
the parallel space by the following equivalent one. For a vector v ∈ E‖ this norm is given by

‖v‖ = max
i∈I

(|ni · v|), (3)

where the index i enumerates the faces of the atomic surface. Note that the expression (3) may
not define a norm if the vectors {ni} span a proper subspace of E‖. If this is the case, we can
turn (3) into a norm by appending to {ni} the vectors of a basis of the orthogonal complement
to this subspace. The advantage of the norm (3) over the ordinary Euclidean one is that the
set Yr defined with the former has an especially simple geometry. To see this, consider the
intersection of a singular cut with the set tr,i (2). This intersection is a union of r-balls centres
with belonging to an R-dense set on a hyperplane perpendicular to ni . Note also that an r-ball
defined with the norm (3) is a convex polyhedron and two of its faces are perpendicular to ni .
As is clear from figure 2, the union of such r-balls for r big enough is a ‘thickened’ hyperplane
(a set of points x ∈ E‖ satisfying a − r � x · ni � a + r for some a). This can only be possible
if the set tr,i takes the form of a ‘thickened torus’:

tr,i = Ti + Ii, (4)

where Ti is an affine subtorus of T N of codimension 2 orthogonal to both ni and ki , Ii is a
segment of length 2r parallel to ni and the sign ‘+’ stands for the convolution (see remark in
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the introduction). In what follows we will frequently use the notion of thickened affine torus,
and it is convenient to give it a broader definition, which will include (4) as a special case:

Definition. A thickened affine torus t is a convolution of an affine torus T with a compact
convex subset B of E‖:

t = T + B. (5)

Thus, we have shown that for r big enough, the obstacle Yr is a finite union of thickened
affine tori (5). Note also that Yr can be equipped with a Whitney stratification [14] in such a
way that any thickened torus containing a point of a stratum contains the entire stratum.

3. Equivalence of cohomology rings of the continuous hull and T N\A

Following [15], we define the continuous hull MP of the quasiperiodic pattern as a completion
of set of punctured patterns in the metric of ‘approximate match’ D (roughly speaking,
two patterns are separated by the distance <ε in the metric D if within the ball of radius
1/ε the Hausdorff distance between them is smaller than ε; for exact definition see [15]).
In this section, we establish the equivalence of the cohomology ring of MP and that of a
complement of T N to an arrangement of thickened affine subtori A. We start the proof by
constructing a sequence of topological spaces Xr parametrized by a real r, and show that
MP is homeomorphic to the inverse limit of this sequence. Then we show that in the case
of quasiperiodic patterns admitting matching rules, in the homotopy category, the limit is
attained for a finite r0. Finally, we demonstrate that the space Xr0 is homotopy equivalent to
T N\A. Note that the representation of the continuous hull of a quasiperiodic pattern as an
inverse limit of topological spaces has already been used in the literature [16, 17]. Unlike the
above references, the present approach deals directly with the cut-and-project representation
of the quasiperiodic pattern, which allows for a more intuitive description of the limit space.
It should also be mentioned that the role of the matching rules in convergence of the sequence
of cohomology groups of approximating spaces has been conjectured in [18].

The set T N\Yr represents the origins of the cuts producing non-singular patterns at least
within the r-disc centred at the origin. In order to include the singular patterns, one has to
add some more points to this space, which could be done by considering a metric closure
of T N\Yr . Let us start with the metric on T N induced by the Euclidean metric of RN after
factoring it over Z

N in the standard position. It induces an inner metric on T N\Yr [19] (in
this metric the distance between two points equals the infimum of the lengths of the paths in
T N connecting them and avoiding Yr ). Denote the completion of T N\Yrn

with respect to this
metric by Xrn

. Consider now an unbounded monotonously increasing sequence rn and the
inclusion maps ι′n : T N\Yrn+1 → T N\Yrn

. Because ι′n do not increase the distance between
points, these maps can be extended to Xrn

:

ιn : Xrn+1 → Xrn
. (6)

One can define the inverse limit of the maps (6)

X = lim← Xrn

together with the corresponding projections πn : X → Xrn
.

Corollary 1. The space X is homeomorphic to the continuous hull MP defined in [15].

Proof. Recall that MP is defined as completion of the space of non-singular patterns with
respect to the metric of ‘approximate match’ D of [15] (two patterns have a distance lesser
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than ε if the Hausdorff distance between their patches of size 1/ε does not exceed ε). First of
all, remark that there exist continuous maps ξi : MP → Xi , satisfying ξn = ιnξn+1:

. . .
ιn+1 �� Xrn+1

ιn �� Xrn

ιn−1 �� . . . ι0 �� Xr0

MP

ξn+1

��
ξn

�����������

ξ0

���������������������������
(7)

To define the maps ξi , consider a point a ∈ MP. This point is a limit of a sequence of patterns
obtained by nonsingular cuts, which is Cauchy in the metric of ‘approximate match’. The
origins of these cuts form a sequence of points xn ∈ NS, where NS = ⋂

i

(
T N\Yri

)
. In the

metric of T N the sequence xn converges to a point w ∈ T N (which may belong to a singular
cut!). Consider the cuts with the origins belonging to the w + B⊥

ε , where B⊥
ε is an open PL

ε-ball in E⊥. Those of them, which cross ∂S at the distance less or equal to rk from the origin,
divide B⊥

ε in a finite number of open polyhedral pieces cj . There exist nε and j0 such that for
n > nε all points xn belong to w + cj0 × B‖

ε , where B‖
ε is an ε-ball in E‖. Consider any two

points xn1 and xn2 of the sequence for which n1, n2 > nε . Since cj0 × B‖
ε does not intersect

Yrk
, the distance between them in the induced inner metric of T N\Yrk

is bounded by const · ε.
Therefore, the sequence xn is Cauchy in the latter metric in T N\Yrk

and converges to a point
in Xrk

, which we set as ξk(a). The continuity of ξk and commutativity of (7) are obvious.
Consider now the continuous map ζ : MP → X, satisfying πiζ = ξi , which exists by

virtue of the universal property of inverse limits. Since ξn separates any two points a, b ∈ MP
for which D(a, b) > 1/rn, the map ζ is injective. To establish the surjectivity of ζ , consider
a point x ∈ X. For each k, its image πk(x) can be approximated by a sequence of points
xk,i ∈ NS ⊂ T N\Yrk

:

lim
i→∞

xk,i = πk(x).

The convergence here is defined in the metric of T N\Yrk
and without loss of generality can be

assumed to be uniform in k. The inclusions NS ⊂ T N\Yrn
⊂ Xrn

allows one to consider xk,i

as a point in Xrn
for any n. Then the diagonal sequence yi = xi,i ∈ NS converges in each Xrk

to πk(x) (this follows from the fact that the maps ιn of (6) do not increase distance between
points). The patterns obtained by cuts with origins at the points yi form a Cauchy sequence in
the metric of ‘approximate match’. The limit of this sequence is a point in MP which we set
as ζ−1(x). Therefore, the map ζ is a continuous bijection of a compact Hausdorff space MP
[15], and hence a homeomorphism. �

The consideration in section 2 suggests that the homotopy type of T N\Yr stabilizes with
increasing r, and one would expect the same for Xr . This is indeed the case, more precisely,
for the polygonal atomic surfaces the following result holds (the proof is given in appendix):

Corollary 2. There exists an arrangement A of thickened affine subtori of T N and a finite
positive r, such that for any rn+1 > rn � r there is an inclusion A ⊂ Yrn

and the following
maps are homotopy equivalences:

(i) The natural inclusion µn : T N\Yrn
→ Xrn

.
(ii) The inclusion of complements νn : T N\Yrn

→ T N\A.
(iii) The map ιn : Xrn+1 → Xrn

from (6).

An immediate consequence of the above Corollary follows is that the homomorphisms of
cohomology rings induced by (6)

ι∗n : H ∗(Xrn
) → H ∗(Xrn+1)
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are isomorphisms for rn � r . Thus the cohomology ring of the space X equals that of T N\A:

H ∗(X) = lim→ (H ∗(Xrn
)) = H ∗(Xr) = H ∗(T N\A). (8)

Combining (8) with corollary 1 we conclude that the cohomology ring of the continuous hull
MP of a quasiperiodic pattern admitting matching rules is isomorphic to that of a complement
of T N to a finite arrangement of thickened affine tori of codimension 2. This implies in
particular that the cohomologies of MP are finitely generated and can be explicitly calculated
as discussed below.

4. Cohomology of T N\A

Our goal is to find the cohomology groups of the complement of the N -dimensional torus to
an arrangement of thickened affine tori A. Let us start with the exact cohomological sequence
of pair (T N, T N\A)

H∗(TN , TN\A) α∗
�� H∗(TN )

β∗

��
H∗(TN\A)

d∗

��������������

(9)

As a Whitney stratified subspace of a torus, A can be surrounded by an open mapping cylinder
neighbourhood Ã [20]. The mapping cylinder determines a deformation retraction of Ã onto
A as well as that of T N\A onto T N\Ã. As T N is a compact manifold and T N\Ã is its closed
subspace, one has from Poincaré–Alexander–Lefschetz duality [21]

Hi(T N, T N\Ã) = HN−i (Ã) (10)

giving due to the deformation retraction property

Hi(T N, T N\A) = HN−i (A). (11)

The long exact sequence (9) together with the duality relation (11) links the cohomologies
of T N\A with the homologies of A. This is not yet sufficient to relate HN−i−1(A) with
Hi(T N\A) in each dimension (this would be the case if the homologies of the surrounding
space vanished in several adjacent dimensions, as is the case for a sphere, yielding Alexander
duality). However, if the rank of the homomorphism β∗ is known, it is still possible to separate
the dimensions in the sequence (9). Indeed, (9) could be split in five-term exact sequences:

0 �� Im(βn−1) �� Hn−1(TN\A) dn
�� HN−n(A) αn

�� Hn(TN ) �� Im(βn) �� 0 ,

(12)

yielding the following equation on Betti numbers:

bn−1(T
N\A) = bN−n(A) + cn−1 + cn −

(
N

n

)
, (13)

where cn stands for the rank of the map

βn : Hn(T N) → Hn(T N\A). (14)

Thus, the ranks of cohomology groups of T N\A are determined by that of the homology
groups of A and the ranks of the maps (14). To obtain the latter remark that by exactness of
(12), the kernel of βn is isomorphic to the image of αn. On the other hand, αn is by Poincaré
duality equal to the map HN−n(A) → HN−n(T

N) induced by inclusion A ⊂ T N .
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Figure 3. The simplicial resolution of the triple intersection of one-dimensional manifolds. The
intersection point is replaced by a contractible space (here a two-dimensional simplex) and the
multiplicity of intersection is lowered from 3 to 2.

5. Homology of an arrangement of affine tori

The space A defined in corollary 2 is in general case an arrangement of thickened affine tori.
However, as mentioned in the appendix, in many cases this space can be collapsed to an
arrangement of ordinary affine tori, which simplifies the computation significantly. In this
section, we assume that A is already collapsed to such an arrangement.

The homology groups of an arrangement of affine tori could be conveniently computed
using the method of simplicial resolutions (see, e.g., [22], although we follow here a slightly
modified version of the method) and by consecutive application of Mayer–Vietoris spectral
sequence. With this technique, instead of the arrangement A, one considers its resolution
space A
, which has the same homotopy class as A (an example of simplicial resolution is
shown in figure 3). The explicit construction of A
 is as follows. Let us associate with the
arrangement A a combinatorial object L(A) called an intersection poset. The elements of the
intersection poset x ∈ L(A) correspond to connected components of nonempty intersections
of the tori constituent the arrangement A, and the partial order is given by reverse inclusion.
Note that each nonempty intersection of affine tori is itself a disjoint union of affine tori (we
treat a point as a special case of zero-dimensional torus). Consider an abstract simplex 


with vertices enumerated by maximal chains of L(A). For each ∈ L(A), the maximal chains
containing x define a face of 
, which we denote by 
x . Let also tx ⊂ T N stand for the affine
torus corresponding to x. Then the space of the simplicial resolution of A is defined as

A
 =
⋃

x∈L(A)

t
x , (15)

where

t
x = tx × 
x (16)

and the corresponding projection h : A
 → A is induced by the projection of T N × 
 onto
the first component.

Corollary 3. The projection h : A
 → A is a homotopy equivalence.

Proof. First of all, let us show that for any point a ∈ A, the space h−1(a) is contractible. By
construction, h−1(a) is a simplicial set:

h−1(a) = a ×
⋃
y∈La


y, (17)

where La = {y ∈ L|a ∈ ty}. Note that there exists a maximal element x ∈ La defined by
the condition tx = ⋂

y∈La
ty . Obviously, for any subset {yi} ⊂ La satisfying

⋂
i 
yi


= ∅ the



Cohomology of quasiperiodic patterns and matching rules 3123

elements yi form a chain, which can always be extended by including x. In other words, any
non-empty intersection of simplices 
y in (17) contains at least one vertex of 
x . Consider
a vertex v ∈ ⋃

y∈La

y , which does not belong to 
x . The intersection of all simplices 
y

containing v is nonempty and thus contain at least one vertex v′ ∈ 
x and hence the entire
edge [vv′]. Collapsing [vv′] towards v′ defines a deformation retraction of the entire simplicial
set (17) onto its subset obtained by removing the vertex v. This operation can be repeated to
eliminate other vertices not belonging to 
x , which proves the contractibility of (17).

Recall now that A is a Whitney stratified space. By construction, the set La does not
depend on the position of the point a in the stratum. In other words, over each stratum,
the resolution space A
 has a structure of a trivial bundle with contractible layer. This
observation enables us to follow the proof of lemma 1 from [22], section 3.3.3. Namely,
consider a triangulation of A, which exists due to [23]. The interior of each simplex σ of
triangulation is contained within a stratum. Hence, the space h−1(σ ) also has a structure of
trivial bundle with a contractible layer. Then the projection h can be decomposed as

h = hn ◦ · · · ◦ h1 ◦ h0, (18)

where hk contracts the layers over the interior points of k-dimensional simplices of the
triangulation (hk are continuous because the layers over the boundary of the simplex are
already contracted). The maps hk from (18) are homotopy equivalences, which proves that h
is also a homotopy equivalence. �

At the first glance, the simplicial resolution only replaces an arrangement of tori by the
union (15) of a bigger number of more complex objects (16). However, these objects intersect
each other in a more simple way. In particular, t
x ∩ t
y is nonempty iff x and y are comparable.
In a similar manner, several spaces (16) have nonempty intersection iff the corresponding
elements of L(A) form a chain. In this case, the intersection has the form⋂

i

t
yi
= tmax(yi ) × δ, (19)

where δ is a face of 
. Because the comparable elements in L(A) correspond to tori of
different dimensions, the maximal number of intersecting spaces t
yi

in (19) cannot exceed
N +1. As we shall see below, this limits the number of non-zero columns in the corresponding
Mayer–Vietoris double complex to N + 1 (actually this number is even smaller—it equals 2
for two-dimensional patterns and 3 for the icosahedral Ammann–Kramer tiling).

The final step in the computation of the homology groups of the arrangement of affine tori
consists of application of Mayer–Vietoris spectral sequence to the resolution space obtained
above. We use the homology version of the bi-complex described, e.g., in chapter 2 of [24].
Namely, let us consider a finite CW-space X, which is a union of finite number of CW-spaces:

X =
⋃
α

Uα.

The groups of chains of the Mayer–Vietoris bi-complex are defined as

Cp,q =
⊕

α1,···,αp

Cq

(
Uα0,...,αp

)
,

where Uα0,...,αp
stands for a (p + 1)-wise intersection

Uα0,...,αp
=

p⋂
i=0

Uαi
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and Cq are ordinary q-chains (e.g., singular ones). The differential ∂ : Cp,q → Cp,q−1 is the
ordinary boundary operator multiplied by (−1)p, and the differential δ : Cp,q → Cp−1,q is
defined as

δcq

(
Uα0,...,αp

) =
p∑

n=0

(−1)ncq

(
Uα0,...,α̂n,...,αp

)
,

where the hat denotes omission (in this formula the same chain cq is considered as belonging
to both (p + 1)-wise and p-wise intersections). There are two spectral sequences associated
with this bi-complex [24]; we choose the one starting with the homology groups with respect
to the differential ∂:

E1
p,q = H∂(Cp,q).

As there is a finite number of non-zero columns in the original bi-complex, this sequence
converges at a finite step and yields the graded complex associated with the homology groups
of X.

6. Two-dimensional patterns

In the case of two-dimensional quasiperiodic patterns satisfying the rationality conditions the
space A is an arrangement of two-dimensional affine subtori of a four-dimensional torus. As
we shall see, in all cases of interest, these tori intersect each other transversally, that is at
a discrete set of points. Let m denote the number of tori in A. We also denote by nk the
number of points at which k affine tori intersect simultaneously. The simplicial resolution of A

yields m spaces which are homotopy equivalent to two-dimensional tori and
∑

k nk simplices.
All intersections between these spaces are pairwise, giving

∑
k knk intersection points. The

only non-zero groups in the term E1 of the homology spectral sequence of the corresponding
Mayer–Vietoris double complex are the followings:

E1
0,2 = Z

m E1
0,1 = Z

2m E1
0,0 = Z

m+
∑

k nk E1
1,0 = Z

∑
k knk . (20)

Since the above spectral sequence has only two non-zero columns, it collapses at the E2-term.
The only nontrivial differential between the groups (20) is δ : E1

1,0 → E1
0,0. The rank of this

differential equals m +
∑

k nk − p, where p stands for the number of connected components
of A. This yields the following Betti numbers of A:

b2(A) = m b1(A) = m + p +
∑

k

(k − 1)nk b0(A) = p. (21)

To obtain the Betti numbers of T N\A, one also needs to know the ranks cn of the maps βn

(14). Since A does not contain cells of dimension higher than 2, the maps β0 and β1 are
injective, giving c0 = 1 and c1 = 4. On the other hand, in all cases considered below, any
0-cycle and 1-cycle on T 4 can be represented by a cycle on A. Therefore α3 and α4 from
(12) are surjective, yielding c3 = 0 and c4 = 0. To obtain the rank of the remaining map
β2 : H 2(T 4) → H 2(T 4\A) observe that since E1

11 = 0 and E1
20 = 0, the group H2(A) is the

direct sum of the groups H2 of two-dimensional tori constituent A. This allows for explicit
computation of the image of α2 (12). In all cases considered below except of undecorated
Ammann–Beenker tiling and undecorated dodecagonal tiling the rank of α2 equals 4, which
corresponds to c2 = 2. This result is likely to be valid for any two-dimensional quasiperiodic
pattern admitting strong matching rules, because of the following argument using de Rham
cohomologies. The volume forms ω‖ and ω⊥ in E‖ and E⊥ are closed 2-forms on T 4 spanning
a two–dimensional space in H 2

DR(T 4). On the other hand, one can embed R
2 in T 4 in directions
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Table 1. Betti numbers of T N\A for various two-dimensional quasiperiodic patterns. In addition
to Betti numbers b1 and b2 the following parameters of the arrangement A are given: the number of
tori m, the number of connected components p, the rank c2 and the numbers of k-wise intersection
points nk . These parameters enter in formulae (21) and (13).

Tiling b1 b2 m p c2 Numbers of intersections

Ammann–Beenker 5 9 4 1 3 n2 = 2, n4 = 1
Ammann–Beenker decorated 8 23 8 1 2 n2 = 6, n4 = 1, n8 = 1
Penrose (γ ∈ Z[τ ]) 5 8 5 1 2 n5 = 1
Penrose (γ generic) 10 34 10 1 2 n2 = 10, n4 = 5
Dodecagonal 7 28 6 1 3 n2 = 9, n3 = 4, n6 = 1
Dodecagonal decorated 12 59 12 1 2 n2 = 12, n3 = 8, n4 = 3,

n12 = 1

of either E‖ or E⊥ without intersecting A. This suggests that β2(ω‖) 
= 0 and β2(ω⊥) 
= 0,
that is the rank of β2 is at least equal to 2. On the other hand, the rank of β2 cannot be
bigger than 2, because this would allow for continuous variation of the ‘slope’ of E‖ in T N\A,
which is forbidden by the matching rules. Indeed, the n-dimensional volume forms in RN

are parametrized by the points of the Grassmann manifold gN,n. Since dim(g4,2) = 4, the
manifold of volume forms has codimension 2 in H 2

DR(T 4). If the dimension of Im(β2) equals
3, this space would intersect the above manifold in the general case along one-dimensional
curves, which would make possible a continuous variation of the slope of E‖. One can cite as
an example the undecorated versions of octagonal Ammann–Beenker and dodecagonal tilings,
for which the rank of β2 equals 3, and which do not admit matching rules.

Let us illustrate the technique described above by calculating the Betti numbers for the
Ammann–Beenker octagonal tiling. The ‘atomic surface’ of this tiling in its undecorated
version has the shape of a perfect octagon. Eight edges of the octagon give rise to eight
thickened affine tori (4). However, the tori corresponding to the opposite edges knit together
as r increases. This results in four thickened tori, which have a nonempty intersection and
thus can be collapsed to four affine tori ti . They could be specified by the following vectors
spanning the corresponding hyperplanes in the universal covering space of T 4:

t1 : (e1, e2 − e4) t2 : (e2, e1 − e3) t3 : (e3, e2 + e4) t4 : (e4, e3 − e1),

and by the condition that they all pass through the origin. Here ei stand for the basis vectors
and we assume that the torus T 4 is obtained by factoring R

4 over the lattice Z
4 in the standard

position. The above tori intersect at three points:

at (0, 0, 0, 0) : t1, t2, t3, t4 at (0, 1/2, 0, 1/2) : t1, t3 at (1/2, 0, 1/2, 0) : t2, t4,

yielding numbers of intersections n2 = 2 and n4 = 1. Finally, combining (21) with (13) and
using the values of ci found above, we obtain the Betti numbers for T N\A given in table 1.

The computation for other two-dimensional patterns does not differ qualitatively from the
case of Ammann–Beenker tiling. The only exception is the Penrose tiling, which depends on
an extra parameter γ [25]. For a generic value of γ , the arrangement A consists of ten affine
tori, but when γ ∈ Z[τ ] (or, in other words, γ = a + bτ ), where τ = (51/2 − 1)/2, pairs of
parallel thickened tori knit together. This is illustrated in figure 4, in which a part of Penrose
tiling with γ = 5τ − 3 is shown. Since the tiling in figure 4 is obtained by a singular cut,
position of certain vertices is undefined (the affected tiles are shaded). The ambiguously tiled
regions are aligned along ten straight lines, corresponding to ten thickened affine tori of Yr .
However, with increasing r, each pair of parallel lines will form a single band on the plane
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Figure 4. Generalized Penrose tiling (γ = 5τ − 3) in a singular position. For illustrative purposes
only the ambiguously tiled regions (shaded) and the tiles connecting them to infinite bands are
shown.

of the cut. As a result, the arrangement A consists of only five affine tori, all intersecting at
the same point. An infinitesimal variation of γ causes displacement of tori making up Yr in
the direction transversal to the cut, and they do not knit together anymore. This peculiarity
of the values γ ∈ Z[τ ] was first observed in [26]. Note, however, that we do not see any
anomalous behaviour of the cohomology groups for two other classes of γ , reported in [27],
namely γ ∈ ±1/3 + Z[τ ] and γ ∈ 1/2 + Z[τ ].

7. Icosahedral Ammann–Kramer tiling

The atomic surface of the Ammann–Kramer tiling is the triacontahedron obtained as the
projection of the unit cube onto E⊥. Each of 30 faces of the atomic surface gives rise to
an R-dense set of points on a plane in the corresponding singular cut. The singular cut
crossing a face of the triacontahedron always crosses the opposite face as well. As a result,
the thickened affine tori (4) corresponding to the opposite faces knit together. Note also that
since a singular cut crossing the triacontahedron at its vertex also crosses it at all faces, all
resulting 15 thickened tori have a nonempty common intersection. They can also be thinned
down to 15 four-dimensional affine tori, as explained at the end of the appendix. These tori are
perpendicular to the two-fold symmetry axes. They intersect each other at 46 two-dimensional
tori, which form three orbits under the action of the point symmetry group of the arrangement.
Two orbits of 15 elements consist of the tori parallel to the two-fold symmetry axes, one
orbit of 10 elements comprises the tori parallel to the three-fold axes, and the remaining
orbit includes six tori parallel to five-fold axes. There are 32 intersection points, forming
two orbit of 15 points and two exceptional points through which pass all four-dimensional
tori. Since the length of maximal chains of the intersection poset equals 3, there are only
three non-zero columns in the associated Mayer–Vietoris double complex. The corresponding
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Table 2. Multiplicities of irreducible representations of I × Z2 for the elements of the spectral
sequence E2 for the Ammann–Kramer tiling.

Irrep Dimension E2
0,4 E2

0,3 E2
1,2 E2

0,2 E2
1,1 E2

2,0 E2
0,1 E2

1,0 E2
0,0

A 1 1 1 1 1
A′ 1 1 1
T1 3 4 2 3 1
T ′

1 3 2 2
T2 3 4 2 3 1
T ′

2 3 2 2
G 4 1 4 1 3 4 1
G′ 4 1 2 3
H 5 2 4 1 3 6 2
H ′ 5 2 2 4

homology spectral sequence thus necessarily collapses at the E3-term. But, as we shall see,
the only remaining nontrivial differential ∂2 : E2

2,0 → E2
0,1 vanishes because of the symmetry

considerations, and the spectral sequence collapses already at the E2-term
The idea to use the symmetry of the pattern stems from the observation that there is a

naturally defined right action of the space symmetry group of T N\A on the cohomologies of
this space. Similarly, one can define a left action of this group on the homology groups of A.
This action can be continued onto the simplicial resolution space A
 and hence on the entire
Mayer–Vietoris double complex. Since the differentials of the associated homology spectral
sequence commute with the action of the symmetry group, the group action is also defined
on all terms of the spectral sequence. It is natural to decompose the elements of the spectral
sequence in the direct sum of irreducible representations of the symmetry group (assuming
that the homologies with coefficients in R are considered). The result of such decomposition is
shown in table 2. The symmetry of the arrangement A is that of the body-centred icosahedral
six-dimensional lattice (note that the symmetry of A is higher than that of the tiling itself).
The space group factored over the translations of the cubic lattice is isomorphic to I × Z2.
We use the notation of [28] for the irreducible representations of I, while the symmetric and
antisymmetric representation with respect to Z2 part are distinguished by adding a prime to
the symbol of antisymmetric representation.

As may be seen from table 2, no irreducible representation occurs in both E2
2,0 and E2

0,1.
Hence, no nontrivial differential map can exist between these groups. As there are no other
potentially nontrivial differentials at E2, the spectral sequence collapses at the E2-term. The
elements of E2 thus correspond to the summands of the graded modules associated with the
homology groups H∗(A). Since the inclusion maps of the corresponding filtration of H∗(A)

commute with the action of the symmetry group, table 2 also defines the decomposition of
H∗(A) into irreducible representations. Recall, however, that our goal is to compute the
cohomology groups of T 6\A, which are related with H∗(A) by the exact sequence (12). The
symmetry group acts on all elements of (12) (the right action on the homology groups should
be defined as the left action of the inverse element), and this action commutes with the maps
of (12). Hence, projections of the exact sequence (12) onto irreducible representations of the
symmetry group can be considered independently. Table 3 shows the decomposition of various
terms of (12) into irreducible representations (note that the maps βk are zero for k � 4).This
decomposition together with the data from table 2 gives the final answer for the cohomology
groups of T 6\A for the Ammann–Kramer tiling, as shown in table 4. The Betti numbers
obtained this way differs by one in dimensions 2 and 3 from those reported in [15].
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Table 3. Multiplicities of irreducible representations of I × Z2 for the elements of the exact
sequence (12) for the Ammann–Kramer tiling.

Irrep multiplicities

Module Dimension A A′ T1 T ′
1 T2 T ′

2 G G′ H H ′

Im(β0) 1 1
Im(β1) 6 1 1
Im(β2) 6 1 1
Im(β3) 2 2
H 0(T 6) 1 1
H 1(T 6) 6 1 1
H 2(T 6) 15 1 1 1 1
H 3(T 6) 20 2 2 2
H 4(T 6) 15 1 1 1 1
H 5(T 6) 6 1 1
H 6(T 6) 1 1

Table 4. Betti numbers and multiplicities of irreducible representations of I × Z2 for cohomology
groups of T 6\A for the Ammann–Kramer tiling.

Irrep multiplicities
Cohomology Betti
group number A A′ T1 T ′

1 T2 T ′
2 G G′ H H ′

H 0(T 6\A) 1 1
H 1(T 6\A) 12 1 1 1 1
H 2(T 6\A) 72 1 5 5 3 1 3 2
H 3(T 6\A) 181 4 1 4 4 4 4 7 5 10 6

8. Summary and discussion

In this paper, we have shown that if the ‘atomic surface’ of a quasiperiodic pattern satisfies
the rationality condition, the cohomology ring of its continuous hull is isomorphic to that of a
complement of a torus to an arrangement of thickened affine subtori. This fact can be used to
compute the cohomology of the hull. The calculations confirm the previously obtained results
in most cases, with exception of the generalized Penrose tiling and Ammann–Kramer tiling.
The reason for these discrepancies is still unclear (although there are indications [29] that this
may be due to a computational error in [15, 27]).

It should be emphasized that the method of this paper could be applied to other homotopy
invariants of the hull as long as they correspond to continuous functors from the homotopy
category. In particular, the K-theory of the hull should be isomorphic to that of T N\A. This
is an important observation since K-groups of the hull are used to label the gaps in the spectra
of quasiperiodic potentials [30, 31]. The isomorphism between K-groups of the hull and of
T N\A could provide us with a more intuitive geometric view of the nature of the gaps and
spectral projections.

The cohomologies of T N\A also provide a way for classification of topological matching
faults in quasicrystals [32]. This can be illustrated by the following example. Let us consider
a large spherical patch of quasicrystal containing no matching faults near the surface. The
question arises: is it possible to tell just by looking at the surface that there are matching
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faults in the interior of the patch? In some instances the answer may be positive. Indeed,
as the surface layer is free of matching faults, one can define the map S2 → T N\A, where
S2 represents the surface of the patch. If there are no matching faults in the entire patch,
this map can be continued to the three-dimensional disc. Clearly, if the homotopy type of
the map S2 → T N\A is nontrivial, such continuation is not possible. Hence, the elements
of π2(T

N\A) correspond to irremovable point-like matching faults; in the same manner,
the linear defects are characterized by the elements of π1(T

N\A). Therefore, each element
of cohomology groups of T N\A defines an integer-valued function on the matching faults
through the dual of Hurewicz map Hn(T N\A) → hom(πn(T

N\A), Z). These values could
be interpreted as ‘topological charges’ of matching faults.
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Appendix

This appendix contains the proof of corollary 2. To begin with, let us consider the compact
space Yr as a polyhedron in a local PL topology of T N . Then, there exists a regular
neighbourhood of Yr in T N , which we denote by NYr

. The complement to its interior T N\N̊Yr
is

a subspace of T N\Yr , and could also be considered as a subspace of Xr . Owing to the properties
of regular neighbourhoods, one can define a deformation retraction of ρ : T N\Yr → T N\N̊Yr

.
The question arises, whether it is possible to extend ρ on Xr or in other words whether there
exists a deformation retraction ρ ′ making the following diagram commutative:

Xr

ρ′

��
TN\Yr

µ

��

ρ �� TN\N̊Yr (A.1)

The answer depends on the topology of the embedding of Yr in T N , because in general the
metric completion modifies the homotopy type of the complement (e.g., for the complements
to manifolds of codimension bigger than 1). The following condition is sufficient for extension
of ρ ′ on Xr :

Lemma. If any point y ∈ Yr has a simplicial neighbourhood Ny in T N such that Ny

⋂{T N\Yr}
is collapsible in a finite number of steps on ∂Ny

⋂
(T N\Yr) then there exists a deformation

retraction ρ : T N\Yr → T N\N̊Yr
for which the diagram (A.1) can be completed by ρ ′.

Proof. Let (K,L) be the triangulations of (NYr
, Yr), which exist by virtue of the simplicial

neighbourhood theorem [33]. By the condition of the lemma, for each vertex a of L there
exists a collapse

N(a,K)\N(a,L) ↘ ∂N(a,K)\∂N(a, L), (A.2)

where N(a,K) and N(a,L) stand for simplicial neighbourhoods of a in K and L, respectively.
The composition of collapses (A.2) for all vertices of L gives a collapse

NYr
\Yr ↘ ∂NYr

, (A.3)

yielding a deformation retraction ρ : T N\Yr → T N\N̊Yr
. As a composition of finite number

of simplicial maps of finite simplicial complexes, the collapse (A.3) satisfies the Lipschitz
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condition. Hence, any Cauchy sequence in T N\Yr remains Cauchy during the deformation
retraction ρ, which allows us to extend ρ to the metric completion of T N\Yr . �

The task is now to show that the set Yr satisfies the condition of the above lemma for large
enough r. According to the remarks made at the end of section 2, it suffices to consider the
case when Yr is a union of thickened tori tr,i (4). Let us introduce a local coordinate system on
T N by treating points in a neighbourhood of a ∈ T N as vectors x ∈ R

n with a corresponding
to the origin (the space R

N can be thought of as a universal covering space of T N ). Consider
a thickened torus tr,i and let (ni , ki ) be the corresponding unit vectors as defined in section 2.
If a is an interior point of tr,i then the equation of tr,i in the neighbourhood of a is

x · ki = 0. (A.4)

If a lies at the boundary of tr,i then one has to add one of the following inequalities to condition
(A.4):

x · ni � 0 or x · ni � 0. (A.5)

Let now a be an arbitrary point of Yr . It belongs to tr,i for i ∈ I ′ ⊆ I and lies at the boundary
of tr,i for i ∈ I ′′ ⊆ I ′ (the set I ′′ may be empty). One can choose a neighbourhood of a in the
form Bε = B‖

ε × B⊥
ε , where B‖

ε and B⊥
ε are PL ε-balls in E‖ and E⊥ correspondingly. Our

goal is to give an explicit construction of the collapse Bε

⋂
(T N\Yr) ↘ ∂Bε

⋂
(T N\Yr). We

begin by cutting Bε by hyperplanes {x · ki = 0|i ∈ I ′} and {x · ni = 0|i ∈ I ′′}. The resulting
cells together with all their faces form a cell complex G with the underlying space |G| = Bε .
It is pertinent to note that Bε

⋂
Yr corresponds to a subcomplex H of G. Furthermore, the

complex G is in fact a product of two cell complexes G = G‖ ×G⊥ obtained by cutting of B‖
ε

and B⊥
ε by the hyperplanes orthogonal to ni and ki , respectively. For any cell C ∈ G‖ except

of maybe one, which we denote by C0, the space BC = C × B⊥
ε is cut by one or more of

the hyperplanes (A.4). Hence, the complement to its intersection with Yr is collapsible to the
analogous complement of its boundary: BC

∖(
BC

⋂
Yr

) ↘ ∂BC

∖(
∂BC

⋂
Yr

)
. Performing

the collapses in the order of decreasing dimension of cells yields either ∂Bε

∖(
∂Bε

⋂
Yr

)
if the

exceptional cell C0 does not exist or
(
∂Bε

⋃
BC0

)∖((
∂Bε

⋃
BC0

) ⋂
Yr

)
otherwise. Because

the interiors of both BC0

∖(
BC0

⋂
Yr

)
and ∂Bε

⋂ (
BC0

∖(
BC0

⋂
Yr

))
are open discs, one more

collapse reduces the latter case to the former, which proves that the union of thickened tori (4)
satisfies the condition of the lemma.

It remains to construct an arrangement of thickened affine tori A in T N such that A ⊂ Yr

and that the natural inclusion ν : T N\Yr → T N\A is a homotopy equivalence. Actually it
suffices to show that Yr ↘ A, because then the regular neighbourhood of Y r in T N is also
a regular neighbourhood of A (see corollary 3.29 from [33]). To begin with, consider an
intersection of a singular cut with Yr , which is a finite union of thickened hyperplanes. As r
increases, some faces of the resulting polyhedron may disappear, but for r big enough the shape
of the polyhedron eventually stabilizes (see figure 5). Further still, the value of r for which the
stabilization occurs is uniformly bounded by some finite positive r0. This follows from the
observation that the intersection of a singular cut with Yr is defined up to translation by the set
of faces of ∂S through which the cut passes and that ∂S has a finite number of faces. Consider
now the local structure of Yr for r � r0. Any point at the boundary of Yr has a neighbourhood
Bε in which Yr is locally defined by conditions (A.4) and (A.5). The stability of the shape
of the intersection of Yr with a singular cut implies that small variations of r correspond to a
local parallel translations of the boundary of Yr . Owing to the compactness of the boundary
of Yr one can choose a finite covering of it by neighbourhoods Bε such that the boundaries of
Yr+δ and Yr−δ are contained within it for some δ > 0. An appropriate triangulation of these
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Figure 5. Intersection of a singular cut with Yr for different values of r. The shape of the resulting
union of thickened hyperplanes stabilizes with increasing r.

neighbourhoods thus defines a collapse Yr+δ ↘ Yr−δ . Hence, for any r > r0 one has Yr ↘ Yr0

and the arrangement of thickened tori A = Yr0 satisfies conditions of corollary 2.
The last statement of corollary 2 follows from the commutativity of the following diagram:

· · · �� Xrn+1

ιn �� Xrn

ιn−1 �� Xrn−1
�� · · ·

· · · �� TN\Yrn+1

ι′n ��

µn+1

��

νn+1

������������
TN\Yrn

ι′n−1 ��

µn

��

νn

��

TN\Yrn−1

µn−1

��

��

νn−1������������
· · ·

TN\A (A.6)

It should be pointed out here that in some cases the thickened tori constituent the
arrangement Yr0 can be ‘thinned down’. In more exact terms, Yr0 can be collapsed to an
arrangement of ordinary affine tori, which may be substituted for A in corollary 2. In particular,
‘thinning down’ is possible when all thickened tori in Yr0 have a nonempty intersection. in
this case, one can choose a point in the common intersection of thickened tori and make
all affine tori of A pass through this point, which can also be set as the origin. Clearly,
each nonempty intersection in A is also so over the rational numbers. Since no two rational
points in T N can belong to the same cut, the hyperplanes in E‖ obtained by intersection with
A always have a nonempty intersection, and Yr0 can be collapsed to A. The quasiperiodic
patterns obeying substitution rules also fall in this category; in this case, A may be thought of
a result of ‘infinite deflation’ applied to Yr0 . There are other cases when Yr0 can be ‘thinned
down’ including, among others, the generalized Penrose tiling. It remains unclear, however,
whether this possibility is the common property of all patterns with polyhedral atomic surfaces
satisfying the rationality condition.
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